of the AMBER/OPLS results and the small errors for the charged residues are particularly reassuring.

Overall, these results provide important support for the quality of both force fields, though some increases in the root-mean-square deviations may be anticipated with more complete convergence. In fact, the minimization with AMBER/OPLS was extended to 1978 cycles at which point the gradient was 0.495 and the root-mean-square deviation for the protein atoms had only increased to $0.22 \AA$. Further testing of both force fields in molecular dynamics simulations for proteins in water is planned.

Conclusion

A wide range of computations on organic liquids, dilute aqueous solutions, hydrogen bonding, and ion-water complexes has provided a set of functions to describe the nonbonded interactions for proteins in crystals or aqueous solutions. In all, parameters
have been reported for 25 amino acid residues and various terminal groups. The basis for the potential functions is comparatively sound and their form is attractively simple. Combination with bond stretch, angle bend, and torsional terms from the AMBER force field provides a complete model for proteins that is now available for application to innumerable problems addressing the structure, dynamics, and function of biomolecular systems. Initial tests on crystals of cyclic peptides and the protein crambin have demonstrated that the AMBER/OPLS force field yields root-mean-square errors of only $0.1-0.2 \AA$ for the positions of nonhydrogen atoms.

Acknowledgment. Gratitude is expressed to the National Institutes of Health (GM32136) for support of this research, to Jiali Gao for computational assistance, and to Professor Martha M. Teeter for unpublished data and consultation.

A Theoretical Investigation of the Thermal Ring Opening of Bicyclobutane to Butadiene. Evidence for a Nonsynchronous Process ${ }^{\dagger}$

Philip B. Shevlin* and Michael L. McKee*
Contribution from the Department of Chemistry, Auburn University, Auburn, Alabama 36849. Received July 14, 1987

Abstract

An ab initio investigation of the ring opening of bicyclobutane (1a) to butadiene (2a) with geometries optimized at the HF/3-2IG level predicts a two-step process with an intermediate 3-butenylidene (5). Since this prediction is in conflict with experimental results, the reaction surface was reinvestigated with geometries optimized at the MP2/3-21G level. This procedure leads to a transition state for the $\sigma 2_{\mathrm{s}}+\sigma 2_{\mathrm{a}}$ ring opening which lies $43.6 \mathrm{kcal} / \mathrm{mol}$ above bicyclobutane ([MP4SDTQ/6-31G*]//MP2/3-21G + ZPC//3-2IG) in good agreement with the known barrier for the thermal ring opening of 1 a to 2 a of $40.6 \mathrm{kcal} / \mathrm{mol}$. The geometry of the MP2/3-2IG transition state, with one $\mathrm{C}-\mathrm{C}$ bond lengthened by $0.783 \AA$ and the other increasing by only $0.088 \AA$, indicates a nonsynchronous reaction. The disrotatory ring opening of 1a (based on a C_{2} transition state) has a predicted barrier of $97.0 \mathrm{kcal} / \mathrm{mol}$ at the $\left[\mathrm{MP} 4 \mathrm{SDQ} / 6-31 \mathrm{G}^{*}\right]+\mathrm{ZPC} / / 3-21 \mathrm{G}$ level of theory.

The bicyclo[1.1.0]butane ring system, with its strain energy of over $60 \mathrm{kcal} / \mathrm{mol},{ }^{1}$ has been the subject of numerous theoretical and experimental investigations. Of particular interest have been studies of the ring opening to 1,3 -butadienes. When the ring opening of bicyclo[1.1.0]butane (1a) to 1,3-butadiene (2a) is carried out thermally, the central bond remains intact while two opposite peripheral $\mathrm{C}-\mathrm{C}$ bonds are broken in going to the product. ${ }^{2-4}$ Studies of 1,3-dimethylbicyclobutanes have demonstrated that the reaction is highly stereoselective with exo substituents at C_{2} and C_{4} becoming cis, trans in the product butadiene in what has been characterized as a stereoselective $\sigma 2_{\mathrm{s}}+\sigma 2_{\mathrm{a}}$ reaction (eq 1). ${ }^{3}$ Mechanistic interpretations of this ring opening have been
 be forbidden from an analysis of a correlation diagram where orbitals can be assigned with respect to a C_{2} axis that is maintained during the reaction. However, the conrotatory ring opening, which is often interpreted as the allowed $\left[\sigma 2_{\mathrm{s}}+\sigma 2_{\mathrm{a}}\right]$ reaction, cannot be followed by any element of symmetry higher than C_{1}. As-

[^0]suming that the reaction can be followed by an approximate correlation diagram may lead to erroneous conclusions. ${ }^{6}$

Dewar ${ }^{8}$ has argued that most reactions involving the breaking or forming of two bonds are not synchronous and many are not concerted. MINDO $/ 3$ calculations ${ }^{9}$ have found that the ring opening of bicyclobutane is a two-step reaction involving the intermediacy of the cyclopropylcarbinyl biradical, 3. The stereachemistry of the reaction is maintained due to slow intercon-

version of the "biradicaloids" compared to further reaction to form
(1) Wiberg, K. B. Angew. Chem., Int. Ed. Engl. 1986, 25, 312-322.
(2) Blanchard, E. P., Jr.; Cairncross, A. J. Am. Chem. Soc. 1966, 88, 487-495.
(3) Closs, G. L.; Pfeffer, P. E. J. Am. Chem. Soc. 1968, 90, 2452-2453.
(4) Wiberg, K. B.; Lavanish, J. M. J. Am. Chem. Soc. 1966, 88 , 5272-5275.
(5) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie, Academic Press: New York, 1970.
(6) Mulder, J. J. C. J. Am. Chem. Soc. 1977, 99, 5177-5178.
(7) Aihara, J. Bull. Chem. Soc. Jpn. 1978, 5l, 1788-1792.
(8) Dewar, M. J. S. J. Am. Chem. Soc. 1984, 106, 209-219.
(9) Dewar, M. J. S.; Kirschner, S. J. Am. Chem. Soc. 1975, 97, 2931-2932.
(10) For the application of the principle of least motion to the rearrangement of 1a see: Altmann, J. A.; Tee, O. S.; Yates, K. J. Am. Chem. Soc. 1976, 98, 7132-7138.

Table I. Total Energies (hartrees) and Zero Point Energies (kcal/mol) for Various Species Optimized at the 3-21G Level on the $\mathrm{C}_{4} \mathrm{H}_{6}$ Potential Energy Surface

	molecule	moI sym	3.21G	$6.31 \mathrm{G}^{*}$	MP2/6-31G ${ }^{\text {a }}$	MP2/6-31G**	MP4SDQ/6.31G ${ }^{\text {a }}$	ZPE ${ }^{\text {b }}$
1	bicyclobutane	$C_{2 v}$	-153.986 64	-154.869 59	-155.14618	-155.38711	-155.18177	58.44 (0)
2	butadiene	$C_{2 h}$	-154.059 46	-154.91961	-155.21243	-155.42069	-155.25233	57.77 (0)
3	TS1	C_{1}	-153.904 94	-154.78160	-155.07276	-155.304 36	-155.10882	55.65 (1)
4	3-butenylidene	C_{1}	-153.93570	-154.800 37	-155.065 81	-155.27835	-155.11141	54.65 (0)
5	3-butenylidene	C_{1}	-153.93586	-154.80083	-155.06584	-155.27858	-155.11139	54.60 (0)
6	TS2	C_{1}	-153.91163	-154.78294	-155.07492	-155.29693	-155.11103	55.50 (1)
7	av TS1,TS2	C_{1}	-153.906 33	-154.77873	-155.07220	-155.29721	-155.10875	
8	constrained TS	C_{1}	-153.87722	-154.74705	-155.056 36	-155.28233	-155.09105	
9	disrotatory TS	C_{2}	-153.839 54	-154.70669	-155.00601	-155.225 39	-155.04216	54.32 (2)
10	$\mathrm{C}_{2} \mathrm{H}_{3}$	C_{s}	-76.96279	-77.39027	-77.50609	-77.60172	-77.53128	24.29 (0)

${ }^{a}$ Frozen core approximation. ${ }^{b}$ Zero point energy ($\mathrm{kcal} / \mathrm{mol}$) and number of imaginary frequencies in parentheses.
butadiene. In this sense the biradicaloid retains a "memory" of the original stereochemistry.

In the photolysis of bicyclobutane, a cyclobutane-1,3-diyl intermediate, 4 , is often suggested. ${ }^{11-13}$ This may then rearrange to 3-butenylidene (5) and thence to $\mathbf{2 a}$ as shown in eq 2. Becknell, Berson, and Srinivasan ${ }^{13}$ have shown in labeling studies that the photolysis of bicyclobutane to form butadiene follows the two competing mechanisms depicted in eq 1 and 2 .

The electronic structure and properties of 1 a have been extensively studied. ${ }^{14-22}$ As part of a comprehensive study of energetic species on the $\mathrm{C}_{4} \mathrm{H}_{6}$ potential energy surface, ${ }^{23}$ we report here an ab initio investigation of the potential energy surface separating $\mathbf{1 a}$ and $\mathbf{2 a}$. These calculations, at the highest level, predict an interesting least-motion approach to a nonsynchronous transition state for this reaction.

Results

All calculations were carried out with the GAUSSIAN 82^{24} and GAUSSIAN 86^{25} program packages. Full geometry optimizations ${ }^{26}$
(11) Adam, W.; Oppenlander, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 661-672 and references cited therein.
(12) Adam, W.; Oppenlander, T.; Zang, G. J. Am. Chem. Soc. 1985, 107, 3921-3924.
(13) Becknell, A. F.; Berson, J. A.; Srinivasan, R. J. Am. Chem. Soc. 1985, 107, 1076-1078.
(14) Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 6941.
(15) Wiberg, K. B. J. Am. Chem. Soc. 1983, 105, 1227. Wiberg, K. B.; Wendoloski, J. J. J. Am. Chem. Soc. 1982, 104, 5679.
(16) Newton, M. D.; Schulman, J. M. J. Am. Chem. Soc. 1972, 94, 767. Eckert-Maksic, M.; Maksic, Z. B. Theor. Chim. Acta (Berlin) 1984, 66, 193. (17) Gassman, P. G.; Greenlee, M. L.; Dixon, D. A.; Richtsmeier, S.; Gougoutas, J. Z. J. Am. Chem. Soc. 1983, 105, 5865-5874. Richtsmeier, S. C.; Gassman, P. G.; Dixon, D. A. J. Org. Chem. 1985, 50, 311-317.
(18) Chang, M. H.; Jain, R.; Dougherty, D. A. J. Am. Chem. Soc. 1984, 106, 4211-4217.
(19) Budzelaar, P. H. M.; Kraka, E.; Cremer, D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 561-567.
(20) Politzer, P.; Kirschenheuter, G. P.; Alster, J. J. Am. Chem. Soc. 1987, 109, 1033-1037.
(21) Wiberg, K. B.; Bader, R. F. W.; Lau, C. D. H. J. Am. Chem. Soc. 1987, 109, 985-1001, 1001-1012.
(22) Collins, S.; Dutler, R.; Rauk, A. J. Am. Chem. Soc. 1987, 109, 2564-2569.
(23) McKee, M. L.; Shevlin, P. B., to be published.
(24) Binkley, J. S.; Frisch, M.; Raghavachari, K.; Fluder, E.; Seeger, R.; Pople; J. A. Gaussian 82; Carnegie-Mellon University.
(25) GAUSSIAN 86, Frisch, M. et al., Carnegie-Mellon Quantum Chemistry Publishing Unit, Carnegie-Mellon University, Pittsburgh, PA 15213.
(26) References to basis sets used are collected here. 3-21G basis: Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. 6-31G basis: Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. 6-31G* basis: Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1977, 77, 3654. MP correlation treatment: Møller, C.; Plesset, M. S. Phys. Rev. 1934, 45, 618. Krishnan, R.: Frisch, M. J.; Pople, J. A. J. Chem. Phys. 1980, 72, 4244 and references therein. CPHF: Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem., Symp. 1979, 13, 225.

TS 1

6 (ave. TS $1, T \mathrm{TS}$)

Disrotatory TS
Figure 1. Relevant geometric parameters for species on the $\mathrm{C}_{4} \mathrm{H}_{6}$ potential energy surface optimized at the $3-21 \mathrm{G}$ level.
were carried out with the 3-21G basis set ${ }^{27}$ or at the MP2/3-21G level except where noted. Single point calculations at the MP4SDQ/6-31G and MP2/6-31G* levels were combined to
(27) Geometries and energies for bicyclobutane and butadiene at the 3 21 level have been reported previously. Whiteside, R. A.; Frisch, M. J.; Pople, J. A. Carnegie-Mellon Quantum Chemistry Archive, 3rd ed; Carne-gie-Mellon: Pittsburgh, 1983.

Table II. Relative Energy ($\mathrm{kcal} / \mathrm{mol}$) of Various Species on the $\mathrm{C}_{4} \mathrm{H}_{6}$ Potential Energy Surface at 3-21G Optimized Geometries

	molecule	3.21G	$6.31 \mathrm{G}^{*}$	MP2/6.31G	MP2/6.31G*	MP4SDQ/6.31G	$\begin{gathered} {\left[\mathrm{MP} 4 \mathrm{SDQ} / 6-31 \mathrm{G}^{*}\right]^{a}} \\ (+\mathrm{ZPC}) \end{gathered}$
1	bicyclobutane	0.0	0.0	0.0	0.0	0.0	0.0 (0.0)
2	butadiene	-45.7	-31.4	-41.6	-21.1	-44.3	-23.8 (-24.5)
3	TS1	51.3	55.2	46.1	51.9	45.8	51.6 (48.8)
4	3-butenylidene	32.0	43.4	50.4	68.3	44.2	62.1 (58.3)
5	3-butenylidene	31.9	43.2	50.4	68.1	44.2	61.9 (58.1)
6	TS2	47.1	54.4	44.7	56.6	44.4	56.3 (53.4)
7	av TS1,TS2	50.4	57.0	46.4	56.4	45.8	55.8
8	constrained TS	68.7	76.9	56.4	65.8	56.9	66.3
9	disrotatory TS	92.3	102.2	88.0	101.5	87.6	101.1 (97.0)
10	$\mathrm{C}_{2} \mathrm{H}_{3}$	38.3	55.9	84.1	115.3	74.8	106.0 (96.1)

${ }^{a}$ At the additivity level with eq 1 . The value in parentheses has been corrected for differences in zero point energy.
Table III. Total Energies (hartrees) for Various Species Optimized at the MP2/3-21G Level on the $\mathrm{C}_{4} \mathrm{H}_{6}$ Potential Energy Surface

	molecule	mol sym	MP2/3-21G	6.31G*	MP2/6-31G ${ }^{\text {a }}$	MP2/6-31G**	$\begin{gathered} \mathrm{MP}_{6-31 \mathrm{SDQ}}{ }^{a} \\ 6-31 \mathrm{a} \end{gathered}$	$\begin{gathered} \text { MP4SDTQ/a }^{a} \\ 6.31 \mathrm{G} \end{gathered}$
1a	bicyclobutane	$C_{2 v}$	-154.35116	-154.86590	-155.14892	-155.38628	-155.18464	$\begin{aligned} & \hline-155.19564 \\ & -155.12597 \end{aligned}$
	TS $1 / \mathrm{Cl}$	C_{1}	-154.278 52	-154.78880	-155.073 41	-155.29381	-155.11313	
$5 s^{\prime}$	3-butenylidene	C_{1}	-154.273 14	-154.79877	-155.06872	-155.27975	-155.11470	
$5 a^{\prime}$	3-butenylidene	C_{1}	-154.27303	-154.79921	-155.068 66	-155.28005	-155.11455	-155.13288
	TS2/CI	C_{1}	-154.28238	-154.77047	-155.08108	-155.30711	-155.11598	
9		C_{1}	-154.27880	-154.79394	-155.07282	-155.29017	-155.11460	
	TS1/CI open shell	C_{1}		-154.796 21	-155.05715 ${ }^{\text {b }}$	-155.27610	-155.10145	

${ }^{a}$ Frozen core approximation. ${ }^{b}$ Spin projected energy (PMP2/6-31G) is -155.08806 hartrees or $9.2 \mathrm{kcal} / \mathrm{mol}$ lower than TS1/CI, the closed shell solution, at the same level.
approximate ${ }^{28}$ relative energies at the MP4SDQ/6-31G* level according to eq 3. Analytical second derivatives of stationary
$\Delta E\left[\mathrm{MP} 4 \mathrm{SDQ} / 6-31 \mathrm{G}^{*}\right]=\Delta E(\mathrm{MP} 4 \mathrm{SDQ} / 6-31 \mathrm{G})+$

$$
\Delta E\left(\mathrm{MP} 2 / 6-31 \mathrm{G}^{*}\right)-\Delta E(\mathrm{MP} 2 / 6-31 \mathrm{G})
$$

points at the $3-21 \mathrm{G}$ level were calculated with the CPHF method. In the interest of clarity, the results have been broken into two parts. The potential energy surface determined by geometry optimization at the HF/3-21G level (the 3-21G surface) will be discussed first. This will be followed by an analysis of the potential energy surface obtained by optimization at the MP2/3-21G level. Unless otherwise stated, all energies will be at the [MP4SDQ/ $\left.6-31 \mathrm{G}^{*}\right]$ (relative energies determined with eq 3) level with zero point corrections estimated at the $3-21 \mathrm{G}$ level.

The 3-21G Potential Energy Surface. Total energies are given in Table I and relative energies are given in Table II for species optimized at the 3-21G level. Relevant geometric parameters are given in Figure 1 where the provided notation is also used in the text and tables. The first transition state located on this surface, TS1, was very asymmetric (Figure 1). Instead of breaking two opposite peripheral $\mathrm{C}-\mathrm{C}$ bonds as might be expected from the experimental results, a peripheral $\mathrm{C}-\mathrm{C}$ bond and the central $\mathrm{C}-\mathrm{C}$ bond are broken forming 3-butenylidene (5). At the 3-21G level the barrier for formation of the carbene is $51.3 \mathrm{kcal} / \mathrm{mol}$ and it is reduced to $48.9 \mathrm{kcal} / \mathrm{mol}$ at the $\left[\mathrm{MP} 4 \mathrm{SDQ} / 6-31 \mathrm{G}^{*}\right]+\mathrm{ZPC}$ level.

Two conformations of carbene $5,5 \mathrm{~s}$ and 5 a , of C_{1} symmetry were studied. These correspond roughly to a syn and anti orientation of the hydrogen on the carbene center with respect to the double bond. Table II demonstrates that there is very little difference in energy between these two carbene conformers. At the highest level, 5 Fa is more stable than $\mathbf{5 b}$ by $0.2 \mathrm{kcal} / \mathrm{mol}$ and lies 58.1 kcal above 1a. Since carbene 5 is destabilized by polarization functions and electron correlation while TSI is stabilized relative to 1a, these effects may have a qualitative influence on the reaction path.

The lowest energy barrier from the carbene to butadiene would undoubtedly be the 1,2 -hydrogen migration to the carbene center which has been shown to occur with little or no barrier in ethylidiene. ${ }^{29.30}$ This pathway was not calculated since labeling

[^1]studies ${ }^{4}$ have shown that thermal ring opening of 1 occurs without hydrogen migration. However, a second transition state on the 3-21G surface was located. This transition state, TS2, may be viewed as that corresponding to the formation of 2 a from 5 by a carbene insertion into a $\mathrm{C}-\mathrm{C}$ bond. At the 3-21G level, TS2 is $47.1 \mathrm{kcal} / \mathrm{mol}$ above bicyclobutane while at the [MP4SDQ/ $\left.6-31 \mathrm{G}^{*}\right]+$ ZPC level this value is increased to $53.3 \mathrm{kcal} / \mathrm{mol}$.

The activation barrier for the formation of 2a from 5 via TS2 is $15.2 \mathrm{kcal} / \mathrm{mol}$ at the $3-21 \mathrm{G}$ level and becomes $-4.7 \mathrm{kcal} / \mathrm{mol}$ at the higher level. Judging by the higher level calculations, it is possible that the carbene is not involved in the reaction at all and is simply an artifact of the method used to generate geometries. Since TS1 involves the breaking of the central bond and one peripheral bond while TS2 involves the reformation of the central bond and breaking the other peripheral bond as shown in eq 4 , an interpolation between the two structures might provide

(4)
an estimate of the true transition state. The geometries of TS 1 and TS2 are similar so a simple average of the internal coordinates was made (6, Figure 1) and used for single point calculations. The predicted barrier at the higher level was $55.8 \mathrm{kcal} / \mathrm{mol}$ (no zero point correction) with respect to bicyclobutane, over $15 \mathrm{kcal} / \mathrm{mol}$ higher than the observed barrier of $40.6 \mathrm{kcal} / \mathrm{mol} .{ }^{31}$

It is possible that more accurate calculations including polarization and correlation would predict a synchronous reaction. To test this possibility, a transition state was located (7, Figure 1) while constraining the two inside angles of the breaking peripheral bonds to be equal. With use of this constraint, the two breaking $\mathrm{C}-\mathrm{C}$ bonds are 1.974 and $1.970 \AA$ in the transition state. The estimated barrier at the higher level was $66.3 \mathrm{kcal} / \mathrm{mol}$ (no zero point correction) and suggests that the reaction is not synchronous.

Disrotatory Ring Opening. Although the disrotatory ring opening of $\mathbf{1}$ is forbidden in a Woodward-Hoffmann sense, ${ }^{5}$ a C_{2} symmetry axis can be maintained throughout the transformation from $\mathbf{1 a}$ to $\mathbf{2 a}$. The disrotatory transition state (8 , Figure 1) is

[^2]Table IV. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) of Various Species on the $\mathrm{C}_{4} \mathrm{H}_{6}$ Potential Energy Surface at MP2/3-21G Optimized Geometries

	molecule	MP2/3-21G	6-31G*	MP2/6-31G	MP2/6-31G*	$\begin{gathered} \text { MP4SDQ/ } \\ 6.31 \mathrm{G} \end{gathered}$	$\begin{gathered} \text { MP4SDTQ/ } \\ 6.31 G \end{gathered}$	$\begin{gathered} {\left[\mathrm{MPSDQ} / 6 \cdot 31 \mathrm{G}^{*}\right]^{a}} \\ (+\mathrm{ZPC}) \end{gathered}$
1a	bicyclobutane	0.0	0.0	0.0	0.0	0.0	0.0	0.0 (0.0)
	TS $1 / \mathrm{Cl}$	45.6	48.4	47.4	58.0	44.9	43.7	$55.5(52.7)^{b}$
$5 s^{\prime}$	3-butenylidene	49.0	42.1	50.3	66.9	43.9		60.5 (56.7)
$5 \mathrm{a}^{\prime}$	3-butenylidene	49.0	41.8	50.4	66.7	44.0		60.3 (56.5)
	TS2/CI	43.2	59.9	42.6	49.7	43.1	39.4	$50.2(47.3)^{c}$
9	3-butenylidene	45.4	47.8	47.8	60.3	44.0		56.5
	TS1/CI open shell		43.7	$57.6^{\text {d }}$	69.2	52.2		63.8

${ }^{a}$ At the additivity level with eq 3. The value in parentheses has been corrected for differences in zero point energy. ${ }^{b} \mathrm{~A}$ consideration of triple substitution reduces the barier to $54.3(51.5) \mathrm{kcal} / \mathrm{mol}$. ${ }^{〔}$ A consideration of triple substitution reduces the barrier to $46.5(43.6) \mathrm{kcal} / \mathrm{mol}$. ${ }^{d}$ If the largest spin contaminant is projected out, ${ }^{35}$ this value becomes $38.2 \mathrm{kcal} / \mathrm{mol}$.

1a

TS 1/Cl

5s'

TS2/CI

Figure 2. Relevant geometric parameters for species on the $\mathrm{C}_{4} \mathrm{H}_{6}$ potential energy surface optimized at the MP2/3-21G level.
$97.0 \mathrm{kcal} / \mathrm{mol}$ higher than that for bicyclobutane and is characterized by two negative eigenvalues of the force constant matrix. ${ }^{32}$ One imaginary frequency corresponds to the formation of radicals while the other corresponds to the formation of cyclopropylmethylene. It is interesting that neither mode corresponds to formation of 1a or $\mathbf{2 a}$. It appears likely that the disrotatory ring opening of 1 la to 2 a is nonsynchronous (and also perhaps nonconcerted).

The MP2/3-21G Potential Energy Surface. The reaction surface was reinvestigated by optimizing geometries at the MP2/3-21G level (Figure 2, Tables III and IV). Including correlation increases both the peripheral and central bond lengths in la to a common value of 1.530 A . Experimentally the two types of bonds have the same length but are much shorter ($1.498,1.493$ \AA). ${ }^{34}$ All energies in this section will refer to calculations at the MP2/3-21G geometry.

Starting with TS1 and searching for a transition state at the MP2/3-21G level, a structure was obtained (TS1/CI, figure 2) which was $45.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than bicyclobutane at the MP2/3-21G level. The structure appears to be similar to TS1

[^3]with a longer breaking central bond and one breaking peripheral bond that is substantially longer. At the [MP4SDQ/6-31G*]+ ZPC level, TS1/CI is $52.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than bicyclobutane. The two carbene structures were determined at the MP2/3-2IG level ($5 s^{\prime}, 5 a^{\prime}$, Figure 2) and have geometries similar to 5 s and 5 a with the MP2/3-21G bond lengths all slightly longer than those at the $3-21 \mathrm{G}$ level. It appears that $\mathrm{TS} 1 / \mathrm{Cl}$ is the transition state relating la to carbene 5. However, at the MP2/3-21G level, the energy of TS1/CI is lower than carbene 5 (Table IV). In order to determine the structure on the product side of TS1/CI, a slight distortion of the transition state was made and thr geometry optimized. The MP2/3-21G energy of the resultant carbene-like structure, 9 , which is characterized by an unusually small angle at a noncyclic saturated carbon (80.3°), is only $0.2 \mathrm{kcal} / \mathrm{mol}$ lower than that of TS1/CI. The stabilization of the structure is due to the conjugation of the π orbital with the empty orbital on the carbene center.

At the [MP4SDQ/6-31G*] level, 9 is $1.0 \mathrm{kcal} / \mathrm{mol}$ less stable than TS1/CI. Therefore it is likely that it will collapse without activation to bicyclobutane with a reverse barrier of $52.7 \mathrm{kcal} / \mathrm{mol}$ via TS1/CI. A consideration of triple substitutions at the $6-31 \mathrm{G}$ level (MP4SDTQ/6-31G) reduces the barrier to $51.6 \mathrm{kcal} / \mathrm{mol}$ (Table IV) at the additivity level.
Since TS1/CI and 9 can be written as distorted cyclopropylcarbinyl biradicals, they could have biradical character. For this reason, an open shell solution for TS1/CI was determined and used as a basis for the perturbative MP expansion. With use of this solution, the barrier at the [UMP4SDQ/6-31*]+ZPC level is $61.0 \mathrm{kcal} / \mathrm{mol}$, only $8.3 \mathrm{kcal} / \mathrm{mol}$ higher than the barrier determined from the restricted solution at the same level. In fact if relative energies are compared at the MP2/6-31G level and the largest spin contaminant is projected out of the open shell solution, ${ }^{35}$ the open shell solution is $9.3 \mathrm{kcal} / \mathrm{mol}$ more stable than the closed shell solution.

Starting with TS2, a new transition state, TS2/CI, was eventually determined at the MP2/3-21G level. TS2/CI is 43.2 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than bicyclobutane but lower in energy than any of the carbene structures. This transition state, which interconverts 1a and 2a contains a bridgehead bond that has not lengthened, while the two opposite breaking peripheral bonds have lengthened by 0.783 and $0.088 \AA$. At the [MP4SDQ/6-31G*] level the $\mathbf{1 a} \rightarrow \mathbf{2 a}$ barrier is $50.2 \mathrm{kcal} / \mathrm{mol}$. If the zero point correction is estimated as $2.9 \mathrm{kcal} / \mathrm{mol}$, which is the value for TS2 at the $3-21 \mathrm{G}$ level, the barrier is $47.3 \mathrm{kcal} / \mathrm{mol}$. Finally, including triple substitutions at the 6-31G level (MP4SDTQ/6-31G) reduces the barrier a further $3.7 \mathrm{kcal} / \mathrm{mol}$ and leads to a barrier of 43.6 $\mathrm{kcal} / \mathrm{mol}$, in reasonable agreement with the experimental value ${ }^{31}$ of $40.6 \mathrm{kcal} / \mathrm{mol}$.

In order to confirm that TS2/Cl was the transition state which interconverts 1a and 2a, the vibrational frequencies were calculated ${ }^{36}$ at the MP2/3-21G level. The single imaginary frequency ($339 \mathrm{i} \mathrm{cm}{ }^{-1}$) corresponds primarily to conrotatory motion of the
(35) Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530-4534. Sosa, C.; Schlegel, H. B. Int. J. Quantum Chem. 1986, 29, $1001-1015$.
(36) In order to determine vibrational frequencies, finite differences were taken of analytical first derivatives of the correlated wave function. The calculations, which required 4 CPU hours on a Cray X-MP/416, were carried out by C. M. Rohlfing.

TS2/CI LUMO (6-31G)
Figure 3. A Salem-Jorgensen plot of the LUMO of TS2/CI. The bridgehead carbon-carbon bond will be stabilized by a treatment which includes electron correlation since the LUMO will be partially occupied.
two methylene groups. However, there is significant motion indicated for all atoms in the transition vector. The zero point energy is calculated to be $52.41 \mathrm{kcal} / \mathrm{mol}$ which is $3.1 \mathrm{kcal} / \mathrm{mol}$ less than the zero point energy of TS2 calculated at the 3-21G level. However, the majority of this difference can be accounted for by the known tendency of correlated wave functions to yield lower zero point energies. ${ }^{37}$

Discussion

Geometry optimization at the 3-21G level leads to the conclusion that the thermal ring opening of 1a to 2a proceeds via a mechanism similar to that in eq 2 involving TS1 and the intermediacy of carbene 5. The calculated activation energy along this pathway of $48.8 \mathrm{kcal} / \mathrm{mol}$ is 8.2 kcal higher than that which has been reported. The predicted intermediacy of 5 is contrary to the experimental observation that a hydroen does not migrate during the thermolysis of 1 to $2 .{ }^{4}$ Since eq 2 has been shown to be operative in the photolytic ring opening of 1, TS1 may be a transition state along this potential energy surface. When carbene 5 is generated by the photolysis of the corresponding diazo compound at $-78^{\circ} \mathrm{C}$, the products are 1a and 2 a in a $1: 5$ ratio. ${ }^{38}$ The pathway to 1 a in this system may be via TS1 in competition with hydrogen migration.

Simple thermochemical considerations indicate that carbene 5 cannot be involved in the thermolysis of 1a. If the energy difference between I-butene and 5 is similar to the ΔH in going from CH_{4} to CH_{2} of $120 \mathrm{kcal} / \mathrm{mol},{ }^{39}$ the ΔH_{1} of 5 may be estimated at $120 \mathrm{kcal} / \mathrm{mol}$. This is probably an upper limit since it does not take into account the fact that $\mathbf{5}$ is an alkyl-substituted carbene which may have some homoconjugative interaction with the double bond. These estimates place 5 some $58-68 \mathrm{kcal}$ above 1a while the experimentally determined transition state is only 40.6 kcal above that of $1 \mathrm{a}^{1{ }^{31}}$ It is interesting that our ab initio calculations predict carbene 5 to lie $58.1 \mathrm{kcal} / \mathrm{mol}$ above la (Table II).

When geometries are optimized at the MP2/3-21G level a transition state (TS2/Cl) whose energy is in good agreement with experiment is obtained. TS2/CI has the attractive feature that the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bond remains intact during the ring opening in accordance with experimental observations. The reason for the large effect of electron correlation on the transition state can be seen by examining the Salem-Jorgensen ${ }^{40}$ plot of the LUMO (Figure 3). The interaction between C_{1} and C_{3} will be attractive in a correlation treatment which effectively allows partial occupation of the LUMO.

[^4]

Figure 4. Structures of 1a, TS2/CI, and 2a demonstrating geometric changes and orbital overlaps which occur in going from reactant to transition state to product.

The geometry of TS2/CI is interesting in light of the complex motions necessary to carry $\mathbf{1 a}$ to $\mathbf{2 a}$. Figure 4 , which compares the geometries of $1 \mathbf{1 a}, \mathrm{TS} 2 / \mathrm{CI}$, and 2a, illustrates that the only two important changes which occur in going from 1a to $\mathrm{TS} 2 / \mathrm{Cl}$ are lengthening of the peripheral $\mathrm{C}-\mathrm{C}$ bond by $0.783 \AA$ and a dramatic inversion at the erstwhile bridgehead carbon at the terminus of this bond. A consideration of the geometry of TS2/CI leads to the prediction that an exo substitutent (H_{7} in Figure 4) at C_{2} of the bond most lengthened in going to TS2/CI will become trans in the substituted 1,3-butadiene product. This is a consequence of the fact that the $\mathrm{H}_{6}-\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{7}$ dihedral angle in $\mathrm{TS} 2 / \mathrm{CI}$ of 28° forces these hydrogens to become cis in the final product. At the same time, the exo substitutent in the other ring (H_{8} in Figure 4) is forced to become cis in the product butadiene as a consequence of the inversion at C_{1} which results in a $\mathrm{H}_{8}-$ $\mathrm{C}_{4}-\mathrm{C}_{1}-\mathrm{H}_{5}$ dihedral angle of 150°. Thus, in the allowed $\sigma 2_{\mathrm{s}}+$ $\sigma 2_{\mathrm{a}}$ mode, the bond that is most broken in the transition state ($\mathrm{C}_{1}-\mathrm{C}_{2}$ in Figure 4) is the bond that is being added to suprafacially. The $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond in TS2/CI has a rotational barrier of $42.2 \mathrm{kcal} / \mathrm{mol}$ (MP2/6-31G), ${ }^{41}$ indicating significant π-bond character. Thus the stereochemistry is "locked in" since as one peripheral bond breaks, rotation is inhibited by a developing π bond in the adjacent peripheral bond.

Perhaps the most interesting facet of TS2/CI is the inversion at C_{1} that occurs upon going to the transition state. When one considers that orbital symmetry considerations predict that the isomerization of 1 to 2 will proceed via a $\sigma 2_{\mathrm{s}}+\sigma 2_{\mathrm{a}}$ pericyclic reaction, the inversion in going to $\mathrm{TS} 2 / \mathrm{Cl}$ is simply the "growing in" of the back lobe at C_{1} that allows the overlap which will eventually result in the π bond between C_{1} and C_{4}. It is interesting that while much of the discussion of the ring opening of $\mathbf{1}$ has been

[^5]concerned with evaluations of the conrotatory and/or disrotatory nature of the openings of both rings, these calculations predict that very little of these rotations occur in going to the transition state. In fact, an examination of the events that must occur after the transition state is reached in proceeding from TS2/CI to 2 a reveals that rehybridizations at $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{4} lead directly to a 1,3-butadiene in which the $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{1}-\mathrm{C}_{4}$ dihedral angle between the two fully formed double bonds is 90° and thus lacks only the delocalization energy of 2a. Although it is possible that TS2/Cl could lead to an s-cis-butadiene, steric constraints probably dictate that the 90° rotation about the central bond will occur in such a way that s-trans-butadiene will be generated.

In light of the geometry of TS2/Cl, it is instructive to consider a molecule such as [1.1.1]propellane (10), a bicyclobutane in which inversion at C_{1} is precluded. Thermolysis of 10 in a flow system at $430^{\circ} \mathrm{C}$ leads to dimethylenecyclopropane (12)..42 In this case, it is possible that the reaction proceeds through the intermediacy of 3 -methylenecyclobutylidene (11), which then undergoes the known cyclobutanylidene to methylenecyclopropane rearrangement to give 12. In this case, thermochemical calculations predict that the barrier for opening of $\mathbf{1 0}$ to 11 is $46.3 \mathrm{kcal} / \mathrm{mol} .^{44}$ It may be that the transition state for this process is analogous to that of TS1 calculated in this work for carbene formation from 1a.

The fact that one peripheral $\mathrm{C}-\mathrm{C}$ bond is lengthened by 0.783 \AA while the other only increases by $0.088 \AA$ in going from 1 a to TS2/Cl indicates that the reaction is strongly nonsynchronous and that the transition state resembles the cyclopropylcarbinyl biradical (3) as originally proposed by Dewar and Kirschner. ${ }^{9}$ However, a consideration of the experimental thermochemistry of the conversion of 1a to 2a appears to rule out the intermediacy of a true biradical. Wiberg and Lavanish ${ }^{4}$ have estimated that biradical 3 will lie some 49 kcal above 1 la while the activation energy for the conversion of 1 a to 2 a is only 40.6 kcal . An estimate of the ΔH_{f} of 3 with updated BDE's ${ }^{45}$ and allowing for a 3$\mathrm{kcal} / \mathrm{mol}$ stabilization of the cyclopropylcarbinyl radical ${ }^{46}$ leads to essentially the same conclusion with 3 predicted to lie 49.3 kcal above 1a. Hence, there exists in TS2/CI an additional stabilization over that found in biradical 3. An examination of the molecular orbitals of $\mathrm{TS} 2 / \mathrm{Cl}$ reveals that some of this stabilization results from an interaction of what was originally the MO of the central bond in 1 with its predominate p character and the p orbital on C_{2} of TS2/Cl. This can be demonstrated by examining SalemJorgensen ${ }^{40}$ representations of the bonding (HOMO-2) and antibonding combinations (LUMO) of the orbitals involved. The HOMO of TS2/CI involves an interaction of the back lobe of the inverted carbon p orbital at C_{1} with the p orbital on C_{2}.

While the thermochemical considerations discussed above appear to preclude the intermediacy of a true biradical in the thermolysis of 1 a , the introduction of suitable substitutents on 1
(42) Belzner, J.; Szeimies, G. Tetrahedron Lett. 1986, 27, 5839. In this paper, an earlier report of the rearrangement of 10 to methylenecyclobutene ${ }^{43}$ is ascribed to an acid catalyzed reaction.
(43) Wiberg, K. B.; Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239.
(44) Pierini, A. B. Reale, H. F.; Medrano, J. A. J. Mol. Struct. (Theochem) 1986, 148, 109-118.
(45) (a) Doering, W. von E. Proc. Natl. Acad. Sci. 1981, 78, 5279-5283. (b) DeFrees, D. J.; Mclver, R. T., Jr.; Hehre, W. J. J. Am. Chem. Soc. 1980. 102, 3334.
(46) Effio, A.; Griller, D.; Ingold, K. U.; Beckwith, A. L. J.; Serelis, A. K. J. Am. Chem. Soc. 1980, 102, 1734.
could render 3 energetically accessable. In fact, the pyrolysis of hexa- and pentamethylbicyclo[1.1.0]butane ${ }^{47.48}$ leads to some products that are best explained through the intermediacy of a biradical such as 3. The thermolysis of $\mathbf{1 b}$ to cis,trans-2,4-hexadiene in eq 1 is attended by the formation of small amounts of trans, trans-2,4-hexadiene and 1-methyl-2-vinylcyclopropane, ${ }^{3}$ both of which are products that could result from the biradical.

Biradical 3 has been postulated as an intermediate in the photochemical cyclization of 1a to 2a. ${ }^{49}$ The diphenyl-substituted biradical, 13, has been generated in the pyrolysis and photolysis of 4,4-diphenyl-2,3-diazabicyclo[3.1.0] hex-2-ene (14). ${ }^{50}$ Although the chemistry of this and related diazabicyclo[3.1.0] hex-2-enes is complicated by a competing cycloreversion to a diazo compound, ${ }^{50,51}$ biradical 13 is thought to close to 2,2 -diphenylbicyclo[1.1.0]butane (15) rather than rearrange to the corresponding butadiene. It is interesting that 13 s as it is initially generated will not have the inverted geometry at C_{1} that we calculate for $\mathrm{TS} 2 / \mathrm{Cl}$ and it may be that inversion at C_{1} would lead to 13a which would be a precursor to the butadiene. Since the inversion of cyclopropyl radicals has a calculated barrier of $5.5 \mathrm{kcal} / \mathrm{mol},{ }^{52}$ it is possible that this inversion cannot compete with closure to 15.

Conclusion

In order to obtain a transition state for the ring opening of 1a whose energy is consistent with experimental observations, electron correlation must be included in the geometry optimizations. When this is done and the geometry of the transition state computed at the MP2/3-21G level, the calculations indicate that the ring opening of 1a proceeds via a strongly nonsynchronous reaction path. The route to the transition state requires a minimum of atomic motion with only the lengthening of one bond and inversion of the bridgehead carbon at the terminus of this bond. The requirement that the transition state be reached with economy of atomic motion appears to outweigh the need for more complex motions in which both bonds are cleaved in concert. Thus, the ring opening of la may be thought of as following a least motion pathway to the transition state. ${ }^{10}$

Acknowledgment. M.L.M. thanks the donors of the Petroleum Research Fund, administered by the Americal Chemical Society, for financial support. P.B.S. is grateful to the National Science Foundation for financial support under Grand No. CHE-8401198. Computer time for this study was donated by the Auburn University Computer Center.

Registry No. 1a, 157-33-5; 2a, 106-99-0.
(47) Hamon, D. P. G. Aust. J. Chem. 1974, 27, 153-161.
(48) Hamon, D. P. G. Aust. J. Chem. 1975, 28, 2641.
(49) Srinivasan, R.; Boue, S. Angew. Chem., Int. Ed. Engl. 1972, 11, 330.
(50) Gassman, P. G.; Greenlee, W. J. J. Am. Chem. Soc. 1973, 95 , 980-982.
(51) Eaton, D. F.; Bergman, R. G.; Hammong, G. S. J. Am. Chem. Soc. 1972, 94, 1351
(52) Lien, M. H.; Hopkinson, A. C. J. Comput. Chem. 1985, 6, 274-281.

[^0]: ${ }^{\dagger}$ Dedicated to Professor Michael J. S. Dewar on the accasion of his 70th birthday.

[^1]: (28) McKee, M. L.; Lipscomb, W. N. J. Am. Chem. Soc. 1981, 103, 4673 Nobes, R. H.; Bouma, W. J.; Radom, L. Chem. Phys. Lett. 1982, 89, 497. McKee, M. L.; Lipscomb, W. N. Inorg. Chem. 1985, 24, 762.

[^2]: (29) McKee, M. L.; Shevlin, P. B. J. Am. Chem. Soc. 1985, 107, 5191-5197.
 (30) Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Binkley, J. S.; Schleyer, P. v. R. J. Am. Chem. Soc. 1983, 105, 6389.
 (31) Frey, H. M.; Stevens, I. D. R. Trans. Faraday Soc. 1969, 61, 90.

[^3]: (32) Budzelaar et al. ${ }^{33}$ have also calculated the disrotatory ring opening transition state of bicyclobutane at the $3-21 \mathrm{G}$ level and single point calcula. tions at higher levels. The total energy they report for this transition state is $6.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy at the $3-21 \mathrm{G}$ level than the value reported here.
 (33) Budzelaar, P. H. M.; Cremer, D.; Wallasch, M.; Wūrthwein, E. U.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 6290-6299.
 (34) Cox, K. W.; Harmony, M. D.; Nelson, G.; Wiberg, K. B. J. Chem. Phys. 1969, 50, 1976; 1970, 53, 858.

[^4]: (37) Hout, R. F.; Levi, B. A.; Hehre, W. J. J. Comput. Chem. 1982, 3, 234. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
 (38) Lemal, D. M.; Menger, F.; Clark, G. W. J. Am. Chem. Soc. 1963, 85, 2529.
 (39) (a) Lengel, R. K.; Zare, R. N. J. Am. Chem. Soc. 1978, 100 7495-7499. (b) Bunker, P. R.; Jensen, P.; Kraemer, W. P.; Beardsworth, R. J. Chem. Phys. 1986, 85, 3724.
 (40) Jorgensen, W. L. QCPE 1977, 11, 340.

[^5]: (41) The geometry of the transition state (TS2/CI) was frozen except for the methylene group which was made planar and then rotated by 90.0°. Single point calculations were made at the MP2/6.31G level.

